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A COMBINED PRECONDITIONING STRATEGY FOR
NONSYMMETRIC SYSTEMS

BLANCA AYUSO DE DIOS, ANDREW T. BARKER, AND PANAYOT S. VASSILEVSKI

Abstract. We present and analyze a class of nonsymmetric preconditioners within a
normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric
matrix problems that typically arise in finite element discretizations. An example of the
additive Schwarz method applied to nonsymmetric but definite matrices is presented for
which the abstract assumptions are verified. A variable preconditioner, combining the
original nonsymmetric one and a weighted least-squares version of it, is shown to be con-
vergent and provides a viable strategy for using nonsymmetric preconditioners in practice.
Numerical results are included to assess the theory and the performance of the proposed
preconditioners.

1. Introduction

The numerical approximation of most phenomena in science and technology requires the
solution of linear or nonlinear algebraic systems. Preconditioning is one of the main tech-
niques that combined with a proper iterative method allows for reducing substantially the
cost of solving those systems. Many efforts are usually devoted to design proper precondi-
tioning strategies that allow for efficient and fast solution of the resulting algebraic systems
[19, 20]. The development of preconditioners is very often guided by the properties of the
underlying problem and it sometimes can even dictate particular aspects that should be
accounted for, when devising the numerical discretization of the continuous problem (as
for instance in [12, 1]).

Even for linear problems, the design and analysis of preconditioners for the linear systems
is far from being complete. For symmetric and coercive problems, a reasonable discretiza-
tion yields a linear system A0x = b with A0 symmetric and positive definite (s.p.d). In
such cases, as it is well known, the spectral information of the matrix itself dictates com-
pletely the convergence of the method. Therefore a preconditioner B0 would be uniform
(and could be turned into an optimal preconditioner) if it captures completely such spectral
information; in other words, if B0 is spectral equivalent to A0.
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However, for linear systems Ax = b, with nonsymmetric coefficient matrix A, the design
of effective preconditioners does not admit a general recipe, at least at the present time.
Likewise, there is no general iterative solver, and furthermore, there is no general theory
that could be used to explain the success of a particular preconditioner when it is indeed
efficient. In most cases, the spectral information does not provide significant information
that could guide the development of any good preconditioner. Field of values have shown
some utility in certain circumstance, but have also shown many limitations [10, 18, 16]. At
the moment it might seem that each particular problem has to be studied separately and a
problem-dependent, discretization-dependent preconditioning strategy had to be devised.
Besides, even when such preconditioning can be designed, its understanding and analysis
are tasks that in most cases are out of reach.

In this paper, we focus on a particular situation, where A is nonsymmetric but still
positive definite. The motivation and application comes from a nonsymmetric Discontinu-
ous Galerkin discretization of an elliptic problem [8]. In [2, 3], additive and multiplicative
Schwarz preconditioners were developed for the solution of the resulting algebraic system.
In both works, the authors show that the GMRES convergence theory cannot be applied
for explaining the convergence since the preconditioned system does not satisfy the suffi-
cient conditions required by such theory. However, such discretizations are used in practice
and have already shown to have some advantages when approximating advection-diffusion
problems [14, 5] and more recently, in the design of methods for some more complex non-
linear problems [17, 15]. In [6], the authors introduce a solver methodology based on the
idea of subspace correction for this type of discretizations for elliptic problems, provid-
ing the analysis of the resulting iterative methods without using any GMRES theory. In
this paper we want to examine, in a more general algebraic abstract framework (that in
particular will apply to the type of methods discussed above), the issue of providing some
convergence theory for a preconditioner based on the classical (but nonsymmetric) Schwarz
preconditioner to be used within GMRES. The ultimate goal is to obtain some insight on
how to improve and tune the preconditioner.

Here, in a first stage we consider two preconditioners for A; a classical additive Schwarz
preconditioner B, which is nonsymmetric, and a symmetric preconditioner Z that basically
uses actions of the additive Schwarz preconditioner B and its adjoint. Both will be shown
to have their pros and cons. For the former, the non-symmetry of B and of B−1A, pre-
cludes developing any theory from which to extract either some a-priori information on the
convergence or to provide some guidelines on how the preconditioner could be improved
or even be designed. The latter, while allowing for developing a convergence theory, will
be shown to be not the most efficient possible option, although the a-priori information on
convergence could be of special value depending on the application. Other symmetrizing
strategies for classical Schwarz methods, different from the one introduced here, have been
already considered in literature by other authors [13].

At first sight, the underlying message that one might obtain from the analysis of this
first part, is that enforcing the symmetry of the preconditioner for a nonsymmetric matrix
might result in the very end, in a wasted effort. We believe this might be the case in many
situations, and we also think it is relevant and important to point it out. At the same time,
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we do believe that the results obtained for analyzing the preconditioner, are of independent
interest (also because of its simplicity), and might provide some basis (as it had happened
already here) or insights for further development of solvers for nonsymmetric systems.

In a second stage of the present paper, we introduce a variable preconditioner B that
is constructed by considering a linear combination of two given (general) preconditioners
B and Z so that in a sense it tries to integrate and exploit the best of each of them. We
describe the construction of this variable preconditioner to be used in GMRES, explaining
how the coefficients in its definition are determined at each iteration inside GMRES. We
show that from the construction of B we immediately can deduce (theoretically) a conver-
gence estimate that guarantees better performance of the resulting solver. In particular, we
show that the new preconditioner outperforms the symmetric preconditioner Z and indeed
always converges faster.

The theory is illustrated with extensive numerical experiments, in which we also study
the performance of all the considered preconditioners. They are all implemented in parallel
to fully take advantage of having considered preconditioners based on additive Schwarz
methods. In the numerical tests, we do observe that the combined preconditioner requires
less GMRES-iterations to achieve convergence than the the classical additive Schwarz B.
However, in this particular case, each iteration for the combined preconditioner is more
costly, which in the end, makes B perform slightly better in terms of execution time. From
these observations, it might be inferred that the new combined preconditioner B might
be more competitive in settings where each iteration is expensive, so that the savings in
iteration count can make up for the high cost per iteration.

Although we have focused on the nonsymmetric but positive definite case, we believe
the ideas presented in the paper might be useful and possibly extended to more complex
problem, including the indefinite case. This issue will be subject of future research.

The outline of the paper is as follows. Section 2 contains a description of the problem
and the original motivation of it. In Section 3, we construct the preconditioner Z and
present the convergence analysis. The combined preconditioner is introduced and analyzed
in Section 4. Finally in Section 5, we consider a particular application and we provide
numerical experiments that verify the developed theory and assess the performance of the
preconditioner.

2. Problem formulation

We are interested in preconditioning a given system of linear equations

(2.1) Ax = b, A ∈ Rn×n x, b ∈ Rn ,

with A being non–symmetric but definite and n is assumed to be large. For the applications
we have in mind, A comes from a finite element discretization of some partial differential
operator and therefore is sparse and structured.

We also assume that A is ill-conditioned and that therefore a good preconditioner B is
required to solve efficiently system (2.1) by an iterative method. A simple option is to
construct such B as the classical additive Schwarz preconditioner coming from A. More
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precisely, we denote by Ik, k = 1, . . . , m, a set of rectangular matrices, such that Ik

extends a local vector vk to a global vector Ikvk with zero entries outside its index set.
Also, let Ic = P be an interpolation matrix that maps a coarse vector v0 = vc to a
global vector Icvc = Pvc. Then, the additive Schwarz preconditioner exploits the local
matrices Ak = IT

k AIk, principal submatrices of A, and the coarse matrix Ac defined as
Ac = IT

c AIc = P T AP . The inverse of the additive Schwarz preconditioner B takes the
following familiar form:

(2.2) B−1 = PA−1
c P T +

Ns∑
k=1

IkA
−1
k IT

k .

Obviously, since A is nonsymmetric the resulting additive Schwarz preconditioner B is
also nonsymmetric. Therefore, for the solution of the resulting preconditioned system
B−1Ax = B−1b, one has to use any of the iterative methods for nonsymmetric systems,
such as the Generalized Minimal Residual (GMRES). For analyzing the convergence of the
resulting iterative method (for the preconditioned system) one has to resort to one of the
available and non-optimal GMRES theories. In the Domain Decomposition framework,
the GMRES convergence theory of Eisenstat et. al. [9] is generally used. In particular,
to derive (a-priori) any conclusion on the performance of the preconditioner B, this theory
requires some control on the coercivity of B−1A (in some inner product). Therefore, at
least in theory, using B directly as a preconditioner for A might not be successful.

Still, we would like to utilize the actions of B−1 to define a preconditioner, say Z, for
A, for which some bounds on the rate of convergence can be a-priori determined. In the
next section, we show how such a preconditioner Z can be constructed (and analyzed) by
exploiting the fact that although A is nonsymmetric, it is positive definite in some inner
product. We also compare numerically, in Section 5, the performance of the constructed
preconditioner Z with the original nonsymmetric additive Schwarz B. As we will show,
even if a theory can be developed for Z it might not be the most efficient option.

We now state our basic assumption regarding the matrix A. More specifically, we assume
that there is an s.p.d. matrix A0 such that A and A0 are related by the following basic
assumption:

Assumption (H0): Let A ∈ Rn×n be nonsymmetric but definite and let A0 ∈ Rn×n be
s.p.d. We say that the pair of matrices (A , A0) satisfy Assumption (H0) with constants
(c0, c1) if they do satisfy the following coercivity and boundedness estimates:

(2.3) vT Av ≥ c0 vT A0v for all v,

(2.4) wT Av ≤ c1

√
vT A0v

√
wT A0w for all v,w.

3. An abstract result

In this section we present the construction and give the analysis of a preconditioner for
A that basically only uses the actions of the additive Schwarz method. We start proving a
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couple of Lemmas that will be required for our subsequent analysis and derivation.

The next Lemma shows that for any pair of matrices (A, A0) satisfying (H0) with con-
stants (c0, c1), the corresponding pair (A−1, A−1

0 ) (consisting of their inverses) also satisfies
(H0) with constants (c3, c4) that depend only on c0 and c1.

Lemma 3.1. Let A ∈ Rn×n be nonsymmetric but definite and let A0 ∈ Rn×n be s.p.d
Let (A, A0) be a pair of matrices that satisfy assumption (H0) with constants (c0, c1) (in
particular, A ∈ Rn×n is nonsymmetric but definite and A0 ∈ Rn×n is s.p.d). Then, the

pair (A−1, A−1
0 ) also satisfies assumption (H0) with constants

(
c0
c21

, c−1
0

)
; that is,

(3.1) vT A−1v ≥ c0

c2
1

vT A−1
0 v, for all v ∈ Rn,

(3.2) wT A−1v ≤ 1

c0

√
vT A−1

0 v

√
wT A−1

0 w, for all v,w ∈ Rn.

Proof. We first show the boundedness estimate (3.2). We define the matrix Y := A
− 1

2
0 AA

− 1
2

0 .
Then, (2.3) and (2.4) imply (or read) that Y satisfy:

vT Y v ≥ c0 ‖v‖2, for allv ∈ Rn ,(3.3)

wT Y v ≤ c1‖v‖‖w‖, for allv,w ∈ Rn .(3.4)

The positivity (3.3) of Y guarantees the existence of Y −1 and so taking v := Y −1w in (3.3),
and using the symmetry of the standard `2-inner product of two vectors together with the
Cauchy Schwarz inequality, we find

c0 ‖Y −1w‖2 ≤ wT Y −Tw = wT Y −1w ≤ ‖w‖‖Y −1w‖,
which shows that ‖Y −1w‖ ≤ 1

c0
‖w‖, that is, the boundedness of Y −1 in the `2-norm:

(3.5) ‖Y −1‖ ≤ 1

c0

.

In other words we have shown that

wT A
1
2
0 A−1A

1
2
0 v = wT Y −1v ≤ 1

c0

‖v‖‖w‖ ∀v,w ∈ Rn .

Setting now in the above equation v := A
− 1

2
0 v and w := A

− 1
2

0 w, we reach the desired
boundedness estimate (3.2) for A−1 in terms of A−1

0 .

The positivity estimate (3.1) can be shown as follows. On the one hand, the boundedness
(3.4) of Y with v = v and w = Y −1v gives

‖v‖2 = vT Y (Y −1v) ≤ c1 ‖Y −1v‖‖v‖ ∀v ∈ Rn .

which readily implies

(3.6) ‖Y −1v‖ ≥ 1

c1

‖v‖ ∀v ∈ Rn .

On the other hand, using the positivity estimate (3.3) of Y , we have

vT Y −1v = (Y −1v)T Y T (Y −1v) = (Y −1v)T Y (Y −1v) ≥ c0 ‖Y −1v‖2 ∀v ∈ Rn .
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Then, the above relation together with estimate (3.6) give the following positivity estimate
for Y −1 :

vT Y −1v ≥ c0

c2
1

‖v‖2 ∀v ∈ Rn .

Now, setting in the above estimate v := A
− 1

2
0 v, we obtain the coercivity relation (3.1) and

conclude the proof. �

Next, let B0 denote the s.p.d. additive Schwarz preconditioner of A0, whose inverse is
defined as:

(3.7) B−1
0 = PA(0)−1

c P T +
Ns∑
k=1

IkA
(0)−1

k IT
k .

Note that since (A, A0) satisfy assumption (H0) with constants (c0, c1), this immediately

implies that for each k = 1, . . . Ns the family of pairs (Ak, A
(0)
k ) with matrices defined by

Ak := IT
k AIk and A

(0)
k := IT

k A0Ik k = 1, . . . Ns ,

also satisfy assumption (H0) with the same constants. The same is also true for the coarse

pair of matrices (Ac, A
(0)
c ), where Ac = P T AP and A

(0)
c = P T A0P . Then, applying Lemma

3.1 to each of these pairs, we have that the corresponding pair of their respective inverses

and hence the pair with the product matrices
(
IkA

−1
k IT

k , IkA
(0)−1

k IT
k

)
satisfies (H0) with

constants (c0c
−2
1 , c−1

0 ) (i.e, (3.1) and (3.2)). The latter implies that the inverses of the
additive Schwarz preconditioners B−1 (as defined in (2.2)) and B−1

0 (as defined in (3.7)),

are related in the same way (as their individual terms IkA
−1
k IT

k and IkA
(0)−1

k IT
k ). That

is: (B−1, B−1
0 ) also satisfy (H0) with constants (c0c

−2
1 , c−1

0 ). Applying once more Lemma
3.1, we straightaway deduce that the pair (B, B0) also satisfy (H0), now with constants
(c3

0c
−2
1 , c2

1c
−1
0 ).

Now, since B0 is the classical s.p.d. additive Schwarz preconditioner for the s.p.d A0, B0

and A0 can be shown to be spectrally equivalent: there exists γ0, γ1 > 0 such that

(3.8) γ0v
T B0v ≤ vT A0v ≤ γ1v

T B0v ∀ v ∈ Rn ,

where the constants γ0 and γ1 might depend on the parameters of the discretization and the
problem. B0 would be optimal if neither γ0 nor γ1 depend on the discretization parameters
(or size of the system n).

Using this extra information, it is straightforward to deduce that the pair (B, A0) also
satisfy (H0) with constants (β0, β1) that depend only on c0, c1, γ0 and γ1. All these obser-
vations are summarized in the following Lemma:

Lemma 3.2. Let (A, A0) satisfy assumption (H0) with constants (c0, c1). Let B be the
additive Schwarz preconditioner of A (defined through (2.2)) and let B0 be the corresponding
s.p.d additive Schwarz preconditioner of A0 (defined through (3.7)) and assume B0 is such
that

γ0v
T B0v ≤ vT A0v ≤ γ1v

T B0v, ∀ v ∈ Rn ,

for some γ0, γ1 > 0. Then, the pair (B, A0) also satisfies (H0) with constants (β0, β1):

(3.9) vT Bv ≥ β0 vT A0v, for all v,
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and

(3.10) wT Bv ≤ β1

√
vT A0v

√
wT A0w, for all v, w.

The constants β0 and β1 are given by

(3.11) β0 =
c3
0

c2
1γ1

β1 =
c2
1

c0γ0

.

We note that the same results, (3.9)-(3.10), hold for B replaced with BT .

With all this relations at hand, we define the s.p.d. matrix

(3.12) Z := BA−1
0 BT .

that can be used as a preconditioner for A in GMRES. Observe that the actions of Z−1

involve actions of both B−1 and B−T as well as multiplications with A0 (not A−1
0 ). There-

fore, the preconditioner Z is computationally feasible.

We next prove the main result of the section, which guarantees that the preconditioned
GMRES method for A with the s.p.d. preconditioner Z = BA−1

0 BT will be convergent
with bounds depending only on the constants involved in relations between A and Z.

Theorem 3.1. Let (A, A0) satisfy assumption (H0) with constants (c0, c1) and let B ∈
Rn×n be the additive Schwarz preconditioner for A, whose inverse is defined through (2.2).
Let Z := BA−1

0 BT be a preconditioner for A. Then, the pair (A, Z) also satisfies (H0)
with constants (α0, α1) defined in (3.14).

Furthermore, the preconditioned GMRES method for A with the s.p.d. preconditioner Z
converges with bounds:

(3.13) ‖rm‖Z−1 = ‖rm‖Z ≤
(

1−
√

α0√
α1

)(m
2 )
‖r0‖Z =

(
1−

√
α0√
α1

)(m
2 )
‖r0‖Z−1 ,

where rm = Z−1rm = Z−1(b − Axm) is the preconditioned residual at the m-th iteration
with r0 = Z−1r0 := Z−1(b−Ax0); ‖ · ‖Z and ‖ · ‖Z−1 are the inner-product norms induced
by the s.p.d matrices Z and Z−1, respectively.

Proof. From Lemma 3.2, we know that (B, A0) satisfy (H0) with (β0, β1). In particular,

the relations (3.9)–(3.10) (used for BT ) show that X := A
− 1

2
0 BT A

− 1
2

0 is well–conditioned.
More precisely, we have

β0 ‖v‖2 ≤ ‖Xv‖2 ≤ β1 ‖v‖2 for all v ∈ Rn .

That is, the s.p.d. matrix XT X is well–conditioned. The coercivity of A in terms of A0

expressed in (2.3), and XT X being well–conditioned (or, bounded) imply that A
− 1

2
0 AA

− 1
2

0

is coercive also in terms of XT X:

vT A
− 1

2
0 AA

− 1
2

0 v ≥ c0‖v‖2 ≥ c0

β1

vT XT Xv for all v ∈ Rn .

Hence, A is coercive in terms of A
1
2
0 XT XA

1
2
0 = BA−1

0 BT = Z, which is the first desired
result.
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Similarly, the boundedness of A in terms of A0, expressed in (2.4), and XT X being

well–conditioned (or coercive) imply that A
− 1

2
0 AA

− 1
2

0 is bounded also in terms of XT X:

wT A
− 1

2
0 AA

− 1
2

0 v ≤ c1‖w‖‖v‖ ≤
c1

β0

√
wT XT Xw

√
vT XT Xv, for all v,w ∈ Rn ,

which is equivalent to say that A is bounded in terms of A
1
2
0 XT XA

1
2
0 = BA−1

0 BT = Z. This
completes the proof that the pair (A, Z) verifies assumption (H0) with constants (α0, α1)
defined by:

(3.14) α0 =
c0

β1

=
c2
0

c2
1

· γ0 α1 =
c1

β0

=
c2
1

c3
0γ1

A standard application of the GMRES convergence theory [9] gives (3.13), and the proof
of the theorem is complete. �

4. A combined preconditioner

In this section, we introduce another preconditioner which in a sense combines the best
of both preconditioners B and Z = BA−1

0 BT . We define its inverse B−1 by forming the
linear combination

B−1 = B−1 + σZ−1.

The parameter σ ∈ R is allowed to change from iteration to iteration inside the GMRES
iterative solver. Therefore, B can be regarded as a variable-step, flexible, preconditioner.

Observe that for σ ≥ 0, by virtue of the analysis of the previous section, the pair
(B−1, A−1

0 ) verifies assumption (H0); i.e, B−1 is coercive and bounded in A−1
0 norm. We

now describe the (practical) construction of the preconditioner B−1, but considering a more
general form:

(4.1) B−1 = αB−1 + σZ−1

without assuming the coefficients α and σ to have nonnegative sign. At the end of the
section we provide the convergence result for B−1 which asserts faster convergence within
GMRES than the one obtained with the preconditioner Z−1.

4.1. Construction of the variable preconditioner. We consider the system of equa-
tions (2.1) that we solve by the preconditioned GMRES method with preconditioner B−1

as defined in (4.1). We now explain how the coefficients are α and σ set inside the GMRES

iteration. Let ‖·‖ =
√

(·, ·) and ‖·‖∗ =
√

(., .)∗ be two inner product norms, to be specified
and chosen later on, and whose role will become clear in the process.

For m ≥ 0, we denote by xm the mth-iterate and by rm = b − Axm the residual. At
the (m + 1)th iteration of GMRES, we construct the new search direction dm+1 based not
only on the previous search directions {dj}m

j=0 but also on the two preconditioned residuals

B−1rm and Z−1rm, as follows:

βm+1dm+1 = βm+ 1
3
B−1rm + βm+ 2

3
Z−1rm +

m∑
j=0

βjdj.
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Here, the coefficients βj, j = 0, 1, . . . , m are chosen such that

(dm+1,dj)∗ = 0 for j < m + 1 and ‖dm+1‖∗ =
√

(dm+1, dm+1)∗ = 1.

It is clear then, that the coefficients βm+ s
3
, s = 1, 2 can be considered arbitrary parameters

at this point. For any such fixed pair in GMRES, the next iterate xm+1 is then computed
by minimizing the residual:

‖b− Axm+1‖ = ‖b− A(xm +
m+1∑
j=0

αjdj)‖ 7→ min

with respect to the coefficients {αj}m+1
j=0 . Notice that out of the two coefficients βm+ s

3
,

s = 1, 2, only their ratio

σ = σm+1 ≡
βm+ 2

3

βm+ 1
3

,

can be considered as a free parameter (the rest is compensated by the αm+1-coefficient).

In practice, we proceed as follows. At step m + 1, based on the previous search direc-
tions {dj}m

j=0 and the preconditioned residuals B−1rm and Z−1rm, we have to solve the
minimization problem:

‖b− A(xm +
m∑

j=0

αjdj + αm+ 1
3
B−1rm + αm+ 2

3
Z−1rm)‖ 7→ min ,

with respect to the coefficients {αj}m
j=0, and αm+ s

3
, s = 1, 2. As we show next the solution

of such minimization problem can be reduced to the solution of a 2×2 system, by choosing
appropriately the inner product (·, ·)∗.

Consider the quadratic functional J (α)

J (α) ≡ ‖rm − A(
m∑

j=0

αjdj + αm+ 1
3
B−1rm + αm+ 2

3
Z−1rm)‖2 7→ min .

as a function of the coefficients α = (αr). Set the inner product (·, ·)∗ = (A(·), .A(·)), which
is equivalent to assuming that the search directions {dj} are (A(.), A(.)) orthogonal. Then,
we have

0 =
1

2

∂J
∂αj

= αj − (rm − αm+ 1
3
AB−1rm − αm+ 2

3
AZ−1rm, Adj), j ≤ m,

which gives

(4.2) αj = (rm, Adj)− αm+ 1
3
(AB−1rm, Adj)− αm+ 2

3
(AZ−1rm, Adj), j ≤ m.

Setting now the partial derivatives of J w.r.t. αm+ s
3

to zero, we get

(4.3)

αm+ 1
3
‖AB−1rm‖2 − (rm − A(

m∑
j=0

αjdj + αm+ 2
3
Z−1rm, AB−1rm) = 0,

αm+ 2
3
‖AZ−1rm‖2 − (rm − A(

m∑
j=0

αjdj + αm+ 1
3
B−1rm), AZ−1rm) = 0.
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Substituting αj from (4.2) into (4.3) we end up with a system of two equations where the
only two unknowns are the coefficients αm+ s

3
with s = 1, 2:

(4.4)

• αm+ 1
3

(
‖AB−1rm‖2 −

∑
j

(AB−1rm, Adj)
2

)

+αm+ 2
3

(
(AZ−1rm, AB−1rm)−

∑
j

(AZ−1rm, Adj)(AB−1rm, Adj)

)
= (rm, AB−1rm)−

∑
j

(rm, Adj)(AB−1rm, Adj) = (rm, AB−1rm −
∑
j

(AB−1rm, Adj)Adj),

• αm+ 1
3

(
(AZ−1rm, AB−1rm)−

∑
j

(AB−1rm, Adj)(AZ−1rm, Adj)

)

+αm+ 2
3

(
‖AZ−1rm‖2 −

∑
j

(AZ−1rm, Adj)
2

)
= (rm, AZ−1rm)−

∑
j

(rm, Adj)(AZ−1rm, Adj) = (rm, AZ−1rm −
∑
j

(AZ−1rm, Adj)Adj).

To show the solvability of the above system for αm+ s
3

with s = 1, 2 (which will imply that

the preconditioner B−1 is well defined), we use the following lemma.

Lemma 4.1. Let (H, (., .)) be a Hilbert space with inner product (·, ·) and let h, f , g ∈ H.
Let S be a finite dimensional subspace of H spanned by an orthonormal system {pj}m

j=1,
i.e., (pi, pj) = δi,j. Let π = πS : H −→ S be the orthogonal projection on S, with respect to
the inner product (·, ·). Then, the best approximation to h from elements from S augmented
by the two vectors f and g is given as the solution of the least squares (or minimization)
problem

(4.5) min
αr

r= 1
3
, 2
3
, 1,..., m

‖h− α 1
3
f − α 2

3
g −

∑
j

αjpj‖ 7→ min

over the coefficients {αr}, r = 1
3
, 2

3
, 1, . . . , m. Solving problem (4.5) is equivalent to solve

the following two-by-two system

(4.6)

(
‖(I − π)f‖2 ((I − π)f , (I − π)g)

((I − π)f , (I − π)g) ‖(I − π)g‖2

)
·
[

α 1
3

α 2
3

]
=

[
(h, (I − π)f)
(h, (I − π)g)

]
,

which has a unique solution provided (I − π)f and (I − π)g are linearly independent. If
(I − π)f and (I − π)g are linearly dependent, there is also a solution, since the r.h.s. in
(4.6) is compatible.
The remaining coefficients {αj} are computed from π(h− α 1

3
f − α 2

3
g) =

∑
j

αjpj, that is:

αj = (h− α 1
3
f − α 2

3
g, pj).

Proof. It is clear that the least-squares problem (4.5) reduces to finding the best approx-
imation to (I − π)h from the space spanned by the two vectors (I − π)f and (I − π)g.
Indeed, we can rewrite (4.5) as

‖(I − π)h− α 1
3
(I − π)f − α 2

3
(I − π)g −

∑
j

α′
jpj‖ 7→ min .
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Since the last component
∑
j

α′
jpj is orthogonal to (I − π)

(
h− α 1

3
f − α 2

3
g
)
, the above

minimum equals

min
α 1

3
, α 2

3

min
α
′
j

‖(I − π)h− α 1
3
(I − π)f − α 2

3
(I − π)g −

∑
j

α′
jpj‖

= min
α 1

3
, α 2

3

min
α
′
j

(
‖(I − π)h− α 1

3
(I − π)f − α 2

3
(I − π)g‖2 + ‖

∑
j

α′
jpj‖2

) 1
2

= min
α 1

3
, α 2

3

‖(I − π)h− α 1
3
(I − π)f − α 2

3
(I − π)g‖

= min
α 1

3
, α 2

3

(
‖h− α 1

3
(I − π)f − α 2

3
(I − π)g‖2 − ‖πh‖2

) 1
2
.

The last problem leads exactly to the Gram system (4.6). This completes the proof. �

We now apply last Lemma to our case, to show that the system (4.4) has a solution and
hence B−1 is well defined. We set h = A−1rm, f = B−1rm, g = Z−1rm and {pj} = {dj}m

j=0

for the vector space with inner-product (·, ·)∗ = (A(·), A(·)). Using then that the {dj} are
(·, ·)∗-orthonormal, we conclude by applying Lemma 4.1 that the system (4.4) is solvable.

Once the coefficients αm+ s
3
, s = 1, 2 are determined, we compute the new direction dm+1

from

βm+1dm+1 = αm+ 1
3
B−1rm + αm+ 2

3
Z−1rm −

m∑
j=0

βjdj,

by choosing the coefficients {βj}m
j=0 to satisfy the required orthogonality conditions

(dm+1,dj)∗ = (Adm+1, Adj) = 0 for j < m + 1,

which gives (assuming by induction that (dj, dk)∗ = δj,k)

βj = (αm+ 1
3
B−1rm + αm+ 2

3
Z−1rm, dj)∗ for j ≤ m.

The last coefficient, βm+1, is computed so that ‖dm+1‖∗ = 1.

4.2. Convergence. We close the section, by giving a result that provides an estimate for
the convergence of the variable preconditioned GMRES.

Theorem 4.1. Let (A, A0) satisfy assumption (H0) with constants (c0, c1) and let B ∈
Rn×n be the additive Schwarz preconditioner for A, whose inverse is defined through (2.2).
Let Z := BA−1

0 BT be a preconditioner for A. Let B be the variable preconditioner with
inverse defined through (4.1) with coefficients determined inside the GMRES iteration by
minimization of the residual. Then, the variable preconditioned GMRES method for A
converges faster than the preconditioned GMRES method with preconditioner Z.

Proof. The proof of the Theorem follows by the definition of B−1 (as explained before).
From its construction it is straightforward to infer the following comparative convergence
estimate

‖rm+1‖ ≤ min
α, σ

‖rm − A(αB−1 + σZ−1)rm‖ ≤ min
σ

‖rm − σAZ−1rm‖.
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By choosing now ‖ · ‖ as the norm ‖v‖Z−1 =
√

vT Z−1v, the combined preconditioned
GMRES method will converge faster than the corresponding GMRES with preconditioner
Z (that satisfies estimate (3.13) as provided in Theorem 3.1). �

5. Applications and numerical results

In this section we present an application of the results and framework presented in the
previous sections, that will allow us to verify the developed theory and will also asses the
performance of the different preconditioners.

The application we consider comes from a nonsymmetric Discontinuous Galerkin dis-
cretization of an elliptic problem. In [2, 3], additive and multiplicative Schwarz precon-
ditioners were developed for the solution of the above algebraic system. In both works,
the authors show that the GMRES convergence theory cannot be applied for explaining
the observed convergence since the preconditioned system does not satisfy the sufficient
conditions for such theory. Here we aim at comparing the performance of the different
preconditioners introduced in the previous sections, for such discretizations.

More precisely, we consider the following model problem in Ω = [0, 1]2:

−∆u∗ = f in Ω, u = 0 on ∂Ω ,

where the right hand side f is chosen so the exact solution is u∗ = sin(πx) sin(πy), and we
focus on the Incomplete Interior Penalty Discontinuous Galerkin (IIPG) [8] discretization
of the above model problem, with linear discontinuous finite element space (denoted by
V DG) on a shape regular triangulation of Ω, denoted by Th. The resulting method reads:
Find u ∈ V DG such that

ah(u, v) =

∫
Ω

fv dx ∀ v ∈ V DG .

The bilinear form of the IIPG method is given by

(5.1) ah(u, v) =
∑

K∈Th

∫
K

∇u · ∇v dx−
∑
e∈Eh

∫
e

{{∇u}} · [[v]] ds +
∑
e∈Eh

η

|e|

∫
e

[[u]] · [[v]] ds,

for all u, v ∈ V DG. Here, K ∈ Th refer to an element of the triangulation, e ⊂ ∂K denotes
an edge of the element and we have denote by Eh the set of all such edges or skeleton of the
partition Th. We have used the standard definition of the average and jump operators from
[4], and the penalty parameter η is set to 5 in all the experiments. We denote by Ah the
matrix representation of the operator associated to the bilinear form (5.1), with standard
Lagrange basis functions. Similarly, u and f denote the vector representations (in the same
basis) of the solution (that we aim to compute) and the right hand side. In the end, the
solution process amount to solve the nonsymmetric system:

(5.2) Ahu = f .

The preconditioners we use are based on the standard two–level overlapping domain
decomposition additive Schwarz preconditioner which we denote by B−1. To define it, we
consider an overlapping partition of Ω into rectangular subdomains Ωk which overlap each
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other by an amount equal to the fine discretization size h. Then

(5.3) B−1 = IHA−1
H IT

H +
Ns∑
k=1

IkA
−1
k IT

k .

Here the Ak operators are restrictions of the original operator Ah to the finite element space
Vk that is only supported on Ωk, that is they correspond to the bilinear forms,

ak(u, v) = ah(u, v), ∀u, v ∈ Vk,

as in [11, 7]. Since Vk ⊂ Vh, the operators Ik are standard injection. The operator AH

corresponds to the bilinear form (5.1) on a coarser discretization of the original domain
Ω, where we label the coarse discretization size H. We assume that the fine mesh is a
refinement of the coarse mesh used to represent AH so that IH is the natural injection on
nested grids. The penalty parameter on the coarse grid is taken to be 5H/h in order to
account for the difference of scales in the edge lengths in the penalty terms (see [2, 11], for
further details). We implement these preconditioners on a parallel machine so that each
subdomain is assigned to a processor and the subdomain solves can be done in parallel.

Another preconditioner we consider is

(5.4) Z−1 = B−T A0B
−1,

as outlined in the analysis above. Here A0 is a symmetric operator corresponding to the
bilinear form

a0(u, v) =
∑
K

∫
K

∇u · ∇v dx +
∑

e

η0

|e|

∫
e

[[u]] · [[v]] ds,

where the penalty parameter η0 = 5 is the same as it is in the full bilinear form (5.1).

In what follows we consider four different preconditioning techniques for the nonsym-
metric system (5.2), namely

(1) the standard additive Schwarz preconditioner B−1 used in a right–preconditioned
GMRES algorithm, for comparison with the other options,

(2) the preconditioner Z−1 = B−T A0B
−1 again used in a right–preconditioned GMRES,

(3) the flexible two–preconditioner GMRES variant with the two preconditioners B−1

and Z−1,
(4) and the two–preconditioner GMRES variant with B−1 and B−T as the two precon-

ditioners.

We note that in the third case, if we have applied B−1 to a vector u we can construct Z−1u
by applying B−T A0 to save ourselves one preconditioner application.

The number of GMRES iterations necessary to reduce the relative residual by 10−6 for
our four different preconditioning approaches using various numbers of subdomains Ns for
a fixed problem is given in Table 1. Here we solve the coarse problem involving A−1

H to
a tolerance of 10−10 so that this solve is nearly exact in order to satisfy the theory more
closely. The preconditioning techniques are seen to be scalable in the sense that the number
of iterations does not increase as Ns increases for all four methods. Similarly, we show the
convergence rates in Table 2, where the convergence rate is defined as the factor by which
the true residual is reduced in the last iteration. To get an idea of computational cost,
we show the time to solution in seconds for the four approaches in Table 3. We conclude
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Table 1. Iterations to convergence for h = 2−7, H = 2−5 with a nearly exact
coarse solver and no restart.

Ns B−1 and Z−1 B−1 and B−T Z−1 B−1

4 15 16 38 16
8 15 18 42 18
16 16 18 42 18
32 16 18 44 18
64 15 17 43 17
128 16 18 46 18

Table 2. Convergence rate for h = 2−7, H = 2−5 with a nearly exact coarse
solver and no restart.

Ns B−1 and Z−1 B−1 and B−T Z−1 B−1

4 0.29 0.38 0.65 0.32
8 0.26 0.41 0.71 0.47
16 0.34 0.41 0.61 0.40
32 0.41 0.40 0.71 0.41
64 0.29 0.47 0.64 0.40
128 0.28 0.51 0.71 0.50

Table 3. Time to solution for h = 2−7, H = 2−5 with a nearly exact coarse
solver and no restart.

Ns B−1 and Z−1 B−1 and B−T Z−1 B−1

4 1.74 1.79 3.12 0.84
8 1.39 1.57 3.22 0.74
16 0.70 0.75 1.58 0.34
32 1.66 1.83 4.63 0.94
64 1.44 1.66 4.65 0.88
128 2.70 2.98 8.59 1.76

that the Z−1 preconditioner is not competitive because it is the most expensive in terms
of time per iteration and it also requires the most iterations. For this reason we do not
consider it further in these numerical results. The two preconditioning techniques that use
the two–preconditioner GMRES variant are seen to be effective in convergence rate but to
be somewhat more expensive than the classical B−1 preconditioner, as we might expect.

In practice for parallel computing applications the coarse solve in (5.3) would not be
done exactly. Another modification that is often made in practice is to restart GMRES
after several iterations. In Tables 4, 5, and 6 we repeat the previous experiment where
the relative residual tolerance for the coarse solves is set to 10−4 and GMRES is restarted
every 10 iterations. (These tables should be compared to Tables 1, 2, and 3 respectively.)
We see that the convergence behavior is quite similar and the computational cost is lower,
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Table 4. Iterations to convergence for h = 2−7, H = 2−5 with an inexact
coarse solver and restarting every 10 iterations.

Ns B−1 and Z−1 B−1 and B−T B−1

4 15 18 21
8 16 18 20
16 16 18 20
32 16 18 19
64 16 18 19
128 16 18 19

Table 5. Convergence rate for h = 2−7, H = 2−5 with an inexact coarse
solver and restarting every 10 iterations.

Ns B−1 and Z−1 B−1 and B−T B−1

4 0.19 0.40 0.49
8 0.36 0.42 0.45
16 0.34 0.38 0.44
32 0.32 0.39 0.44
64 0.23 0.32 0.39
128 0.25 0.42 0.34

Table 6. Time to solution for h = 2−7, H = 2−5 with an inexact coarse
solver and restarting every 10 iterations.

Ns B−1 and Z−1 B−1 and B−T B−1

4 1.59 1.73 0.99
8 1.29 1.35 0.72
16 0.59 0.62 0.35
32 0.73 0.79 0.46
64 0.67 0.71 0.44
128 0.89 0.95 0.60

suggesting that these common modifications are also useful and effective for our precondi-
tioning strategies.

To see how these methods scale to larger problems, we consider a much finer mesh in
Tables 7, 8, and 9, while keeping the mesh size for the coarse solve quite coarse. The scal-
ability of the preconditioners in terms of iterations is still present, the preconditioner still
performs well, and in these cases we can see fairly good parallel scalability in the sense that
for a fixed problem size, doubling the number of processors in the parallel solve roughly
cuts the execution time in half for all our preconditioning strategies.

In all the results we have presented so far, the flexible two–preconditioner GMRES vari-
ant has performed slightly better than the classical B−1 preconditioner in terms of number
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Table 7. Iterations to convergence for h = 2−10, H = 2−6 with an inexact
coarse solver and restarting every 10 iterations.

Ns B−1 and Z−1 B−1 and B−T B−1

32 30 32 31
64 30 31 32
128 30 31 31
256 30 31 30

Table 8. Convergence rate for h = 2−10, H = 2−6 with an inexact coarse
solver and restarting every 10 iterations.

Ns B−1 and Z−1 B−1 and B−T B−1

32 0.49 0.67 0.64
64 0.56 0.68 0.66
128 0.52 0.64 0.66
256 0.51 0.68 0.48

Table 9. Time to solution for h = 2−10, H = 2−6 with an inexact coarse
solver and restarting every 10 iterations.

Ns B−1 and Z−1 B−1 and B−T B−1

32 94.32 95.55 40.96
64 37.89 37.59 16.66
128 15.55 15.60 7.82
256 7.76 8.81 5.50

Table 10. Iterations to convergence for h = 2−10, H = 2−9 with an inexact
coarse solver and restarting every 10 iterations.

Ns B−1 and Z−1 B−1 and B−T B−1

32 19 20 23
64 17 18 22
128 15 17 21
256 15 16 20

of iterations to convergence, but the increased computational cost per iteration of this GM-
RES variant has ended up making the classical preconditioner perform better in execution
time. This suggests that the new method may be competitive in settings where each itera-
tion is very expensive, so that the savings in iteration count can make up for the increased
cost per iteration. To examine this setting we consider a problem in Tables 10 and 11 where
the coarse grid solve is done on a relatively fine grid and is therefore quite expensive. The
results in this somewhat artificial setting do show that the new methods are competitive
with the classical preconditioning techniques in terms of computational cost.
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Table 11. Time to solution for h = 2−10, H = 2−9 with an inexact coarse
solver and restarting every 10 iterations.

Ns B−1 and Z−1 B−1 and B−T B−1

32 277.50 280.69 352.85
64 170.94 187.29 133.73
128 79.01 93.61 99.50
256 40.92 45.41 39.59
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